A power is a product of repeated factors.
The base of a power is the repeated factor.
The exponent of a power indicates the number of times the base is used as a factor. The square of a whole number is a perfect square.

Write 5×5 as a power.
Count the number of times 5 is used as a factor.
It is used 2 times. So, the exponent is 2 .
So, $5 \times 5=5^{2}$.

Write the power as repeated multiplication and simplify.

$$
\begin{aligned}
5^{4} & =5 \times 5 \times 5 \times 5 & & \text { Write as repeated multiplication. } \\
& =25 \times 5 \times 5 & & \text { Multiply } 5 \text { and } 5 . \\
& =125 \times 5 & & \text { Multiply } 25 \text { and } 5 . \\
& =625 & & \text { Multiply } 125 \text { and } 5 .
\end{aligned}
$$

So, $5^{4}=625$.

Determine whether each number is a perfect square.
a. 81

$$
81=9 \times 9=9^{2}
$$

Because it is the square of a whole number, 81 is a perfect square.
b. 45

Test by finding a few perfect squares.

$$
5^{2}=5 \times 5=25 \quad 6^{2}=6 \times 6=36 \quad 7^{2}=7 \times 7=49
$$

Because 45 is between the perfect squares $6^{2}=36$ and $7^{2}=49$, you can see that there is no whole number you can square to get 45 .

